On the Automorphism Group of Generalized Baumslag-solitar Groups

نویسنده

  • Gilbert Levitt
چکیده

A generalized Baumslag-Solitar group (GBS group) is a finitely generated group G which acts on a tree with all edge and vertex stabilizers infinite cyclic. We show that Out(G) either contains non-abelian free groups or is virtually nilpotent of class ≤ 2. It has torsion only at finitely many primes. One may decide algorithmically whether Out(G) is virtually nilpotent or not. If it is, one may decide whether it is virtually abelian, or finitely generated. The isomorphism problem is solvable among GBS groups with Out(G) virtually nilpotent. If G is unimodular (virtually Fn × Z), then Out(G) is commensurable with a semi-direct product Z ⋊Out(H) with H virtually free.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on Twisted Conjugacy and Generalized Baumslag-solitar Groups

A generalized Baumslag-Solitar group is the fundamental group of a graph of groups all of whose vertex and edge groups are infinite cyclic. Levitt proves that any generalized BaumslagSolitar group has property R∞, that is, any automorphism has an infinite number of twisted conjugacy classes. We show that any group quasi-isometric to a generalized Baumslag-Solitar group also has property R∞. Thi...

متن کامل

A Logspace Solution to the Word and Conjugacy problem of Generalized Baumslag-Solitar Groups

Baumslag-Solitar groups were introduced in 1962 by Baumslag and Solitar as examples for finitely presented non-Hopfian two-generator groups. Since then, they served as examples for a wide range of purposes. As Baumslag-Solitar groups are HNN extensions, there is a natural generalization in terms of graph of groups. Concerning algorithmic aspects of generalized Baumslag-Solitar groups, several d...

متن کامل

A-t-menability of Baumslag-solitar Groups´swiatos

The Baumslag-Solitar groups are aT -menable. This is proved by embeding them into topological groups and studying representation theoretic properties of the latter. The paper is motivated by the questions of A. Valette. Topological groups and approximation properties. We investigate some approximation properties of not necessarily discrete groups. We are mainly interested in Baumslag-Solitar gr...

متن کامل

Nonhyperbolic free-by-cyclic and one-relator groups

We show that the free-by-cyclic groups of the form F2 o Z act properly cocompactly on CAT(0) square complexes. We also show using generalized Baumslag–Solitar groups that all known groups defined by a 2-generator 1-relator presentation are either SQ-universal or are cyclic or isomorphic to a soluble Baumslag–Solitar group.

متن کامل

Twisted Conjugacy and Quasi-isometry Invariance for Generalized Solvable Baumslag-solitar Groups

We say that a group has property R∞ if any group automorphism has an infinite number of twisted conjugacy classes. Fel’shtyn and Gonçalves prove that the solvable BaumslagSolitar groups BS(1, m) have property R∞. We define a solvable generalization Γ(S) of these groups which we show to have property R∞. We then show that property R∞ is geometric for these groups, that is, any group quasi-isomet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008